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SOME NT# ASPECTS OF THE APPLICATION OF THE ADJOINT
FUNCTIONS AND OF THE PERTURBATION THEORY IN
REACTOR AND SHIELDING DESIGN.

A.A.Abagian, G.I,Drujinina, A,A,Dubinin, 5,M.Zaritsky, V.V.Orlov,
V.Ya.Pupko, A.P.Suvorov, L.M.Usachev, R.P.Fedorenko.

The application of perturbation theory formulas for a critiecal nuc-
lear reactor, published e.g. in Refs /1/, /2/, /3/y /4/y /5/, proved to
be rather suitable in reactor design and experimental research.

Refs /6/, /7/ extended the area of perturbation theory application
for arbitrary linear iunctionals in stationary and time depending prob-
lems of the radiation transfer with given sources. In Ref /8/ the per-
turbation theory formula is obtained for a ratio of different processes
numbers in a stationary reactor.

The application of formulas from Ref/B/ giving more possibilities
in an investigation of reactor physical characteristics is discussed in
ohapter I (L.N,Usachev, S.M.Zaritsky).

The exampl~ of this theory applying for breeding ratio calculations
for variants of fast breeder is presented. The possibility of using this
theory for improvement of the multigroup constants system on the basis
of results measured in a critical assembly is considered,

The use of perturbation theory formulas for the effective multipli-
oation constant and for mtio of different processes numbers in a reactor
for the statement of variational problems on optimum distribution of 4if-
ferent materials in a reactor with an arbitrary neutron spectrum is dis-
cussed in chapter II. (V.Ya,Pupko, G.I.Drujinina), Some identiocal prob-
lems for Keff in applying to & thermal reactor were considered in Ref/b/.

Chapter III (V.V.Orlov, A.A.Abagian, R.P,Fedorepnko, A.A.Dubinin,
A.P.Suvorov) is devoted to using of perturbation theory formulas for
the shielding charsocteristics optimization.

As the application of classical oaloulus of varietions methods for
shielding problems proved to be diffioult in some cases, the optimiza~
tion process is made on the base of linear progremming ideas.
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Chapter I, THE PERTURBATION THEOR! FuR A RATTO OF
PROCESSEC NUMBERS IN A REACTOR,

81. Summary and some improvements in the derivation
made in Ref /8/.

The well lmown in the reactor theory perturbstion theory : ¢ ction
for determination of disturbed critical reactor parameters (see for
instance /3/)
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is obtained from the equation for neutron flux F'(¥, E, n) in a distur-
bed reactor with primed parameters:
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and from the equation for neutron importance in an undisturbed reactor
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To obtain the relation (1) it is necessary to oross mltiply equa-
tlons /2/ apd /3/ by ¥* and P*, subtract one from snother and integrate
over all energies, velocity directions and reaotor volume up to the
outer boundary with vacuun,

Identical operations with co-adjoint equations, formulated in Ref
/6/, were used in Ref /7?/ to obtein the perturbation theory relation
for an arbitrary linear functional of neutron flux, There was conside—
red the more general time depending problem on the distribution of neut-
Tons from given sources.

The concept of the neutron 1mportance in any previous nth cyole to
a process in a chosen (zero) oycle F was introduced in Ref /8/ to ob-
tain the perturbation theory relation for 2 ratio of processes numbers
ocourred in a stationary reactor which is desoribed by homogeneous equ-
ations. The set of equations for these neutron importances serves as
adjoint equation in derivation of the relation required. If we are in-
terested, for example, in the neutron oapture in ith isotope this set

of equations is - 95" £* /
s ~fmj.{ - Jul et 77 /2 -
SPE? (48)
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The suoccessive solving of equations (4a), (4b), (h4o) is equivalent
to a usual provoedure of solving of equation (3) by the successive itera-
tive method, Hence, it is oloar, that at n—*mF;-——)\ F;. Using the ad-
jointness of left parts of equations (3), (4a), (4%}, (4o) and left
part of the equation for the undisturbed flur F(T, E, 1) (equation /2/
being wiihout primes) and carrying out the procedure of the cross multi-
plying and subtraotion, as it was indioated above, e obtain the set of
equations:?

_[F
a; =/é~dﬂduu=...=/?&’g*ﬁ,/9 ERE /\‘-/?‘ifgtrde (4d)
G * 74
Henoe .= where 7 O
A ol L -/?;/; F o6
Summar.;qizing equations for F';, F:... to F;, we obtain the equation
tor 4= TE"
28 @) ‘ 74 wf /
n__ e’ - AEG = [ 2.
P8 Zorss /&/é‘ ‘ '/_(;—‘é‘ddL @"'(@/m'(f’(s)
Carrying out the same procedure of the oross muitiplying, integra-
tion with equationsa (2) ana (5), then forming the chuzge of the number
of prooesses underxr oonaider,ation whioh 18 equal to
8 =/ -G = /5 dedtily — ?f; AELR AV
and using the relation (4d4): a
S dedpdv = S 2K £tF A
d‘. e n
we obtain

j +
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;Cons{dering only periurbations whioh remain reactor oritioal, i.e.
perturbations satisfying the condition (1 ), we note that In geoond,
third and fourth terms of the right part of (6) it is porritle to re-
place @*= Z A" which tends to infinity at n-»oo by 2t -7%'—67,
whioh has the definite limit o

¢ ~
¢":§/’5 sz, % )
The last term in the right part 1s equal to
Fom YL F- F) O
Only ratios of processes numbers (for instance the ratio of oapture-
to~-fission numbers, i,e. to the resotor power) as well as changes of
these ratios when making perturbstions in reactor have the physioal mes-
ning in a oritical reactor.

The variation of ratio of oapture number in isotope-i to this in
isotope-j which equals
f/_@- _arG 4 _ 0;//’0;__ IQ/_Q_'
T o orda  a T O . . 7
g/ g+ig G T glqg % /4 (8)
18 possible to write using (6) at n —-—oco und(?) in the following form
364 -3 -
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18 the neutron flux in a disturbed reactor normalized
in such & wey that capture number in isotope-J is equal to this number
in an undisturbed reaot?r, and

Wt &Y (1)
=] Uy
is a function having the meaning of neutron importanoce with respeot to
ratio of proocesses numbers as it is seen from relation (9).

From relation (11) and the linearity of set of equations(4 )it is

clear t}mt substituting the linear combinationé,’i "éz,- instead of

///}‘ in the right part of equation (ua) and sucgessively solving
equations (4) we shall direotly obtain ¥’as a sum 2 E" . Only one
set of equations is solved instead of two and there is no need for sub-
tracting the main harmonic I-‘; from each F' as it 1s done in relation(?),
sinoe it is generated by every item in the right part of the equation
with the same coefficient 1/Ifn but with & different sign, This oomb}n&-
tion which is advisable to use in oalculations was pointed out in Ref 13 .

The equation for the neutron importance with respect to linear-fractional
funotional was derived in this reference based upon the introducad

there neutron importance concept with respeot to an arbiirsry non-
linear funotional and upon the resutron importance balanoce vhich had
been used in Ref 3 and 7. For small disturbances 1t was shown
that the funotional derivative of the mentioned non-linear functio-
nal with respeot to neutron flux should be in the right hand of the
equation for the neutron importance. In the case of the linear-
fraotional functional, under considuration, this derivative is equal

to
The algorithm of the perturbation theory desoribed was put in nrao-

tioes by us using 18-group 4iffusion approximation in the program for
digital computer, All examples of the perturbation theory application
yesoribed below have been realized or are being realized now by means
of this program.

§2, The exatmples of the use of perturbation
theory formulas,

A. Resgtor variant oaloulations, Reactor design variations are
ususlly desoribed, from the neutron physics standpoint, by change of
the material concentration in reactor different points. Hence, for reactor
variant oaloulations by mesns of formulas (1) and (2) resctor parameters

364
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variations are presented as: Cacys Q’/S N’J}o acys /u’~z¢/:(_{’(§7&9w/d))
PG Zep ) i
X )
where Ga, h)"’/y ) d’e:fine ‘the “interaction between neutrons and ~ ~type
nuoleus,

To show that perturbation theory formulas are rather suitable in
the applying for variant calculations we shall write them for a given
reactor., Let us consider s fast reactor whioh is th.e sgpherioal simpli-
fied model of a power breeder. In the core with a8 r=adius 66 cm and with
a volume 1204 litres fuel, i.e. uranium and plutoniwws oxide, occuples
35% of 8ll volume, steel - 25% and sodium — 40%, Nuclear concentrations
of oxygen, plutonium, uranium, steel a.nd sodium (maltiplied by 1'021‘) in
1 om® are correspondingly equsl to £7=0,01288, J£=0.001100, L=
0,005334, L =0.0214, LI =0.00888.

_In the breeding blanket with a thickness 60 cm concentrations are:
PP ao.022,  LFe0, LY e0.01355, LF =0.0153, L =0.00483.
In the steel refleotor with a thickmess 20 om, L7 =0, P’-o, ﬁ’-o,
f;;i’ =0,072, JO'—” 20,00345, The total breeding ratio BR and the reeding
of the ocore BRC are correspondingly equal to 1,4575 and 0,5947.

At uniform variations of different materiels concentrations in the
core and in the breeding blanket it is suitable to present relations
deseribing varistions of the plutonium critioal concentration, BR and
BRC in the next form:
0= ] LR i (030, B T Tk B BRE T (r2
here N 1s the reactor gone number. Coeﬁ‘icienta L L‘BR’LT"“ of formulas
(12) are presented in the table:

Ye Steel 0 c Flsslon y, N1

fragments
02132 -0,0°441 ~0.0°194 —0,0°191 0.0689 0,0204 —0,0°168
-0.02108 -0,02137 -0.03795 -0.0%480 -0, 0%674=0.,07105-0,0%223
“9.bk  ~B.A5  =8.73 =106  ~7.95 -8,84 —11.5
176 =325  ~0.948 =0,562 =53,7 =17.6 =5,
1824 5.45 2,27 5,22 6.95 =0.767  1.05  1.60
-0.%63  0.284  0.214  0.255  0.281  0.382 0,163 0,422

These coefficients were caloulated for smsll disturbances, i.e.
in assumption F'=F and F''sF, The mentioned programme permits to make
the calculation with F! and F'' to determine limits of these formules
application and to clear up causes of possible disagreements.

364 -5 =
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B. Effect of the constants inaccuracy, At the calculations of coef-
ficients for relations (12)we obtain also coefficients defining the ef-
fect of any material constant inacocurscy in any group on the oritical
concentration, total breeding ratio and oore breeding ratio. It is pos-
sible to perform the analysis similar to that performed in Ref /1&/ by
means of these coeffioclents. It will be recalled that mentioned coeffi-
cients in Ref /14/were determined by the direct calculation.

C. Analysis of critical assembly experiments for the constant system
improvement, Perturbation theory equations (1) and (9) may be con-

sidered as linear equations, relating differences of observed and oalcu-
lated values with inaccuraoy in the multigroup constant system, whioh,
as it is proposed, causes the calculatjon and the experiment disorepancy.
The application of the perturbation theory relations with above meaning
for analysis of cvriticnl assembly experiments and for suoh an experiment
planning can give the systematio improvement method of the multigroup
constant system for a reactor design. For each critical assembly on
which experiments are performed it is possible to calculate the linear
equation coefficients, relating the oritical concentration variation and
the ohanges of ratios of different proocesses numbers observed in an experi-
ment to multigroup conrtant variations, Having a large number of the
mentioned relations for several critical assemblies and for many ratios
of processes numbers it is possible to state the matohing probdlem of
constants, describing sll experiments in the best way. In the general
statement suoh problems can be solved ty the linear programming methods
/1 1/ and in partioular simple cases they can be solved by the trial and
error method,

Capture~to-fission number ratios in different isotopes messured in
different points and integrally over reactor zones can be used as ratios
of processes numbers, Suoch easli_]:y measured values as the reactivity at
the placing of different samples oan be used too. Indeed, the resotivi-
ty osused by a sample placed in a critical reaotor ocan be written so

(see/3/)
K-7_ 4 ' - [FE ~+ AX] ot
% a:- s where (7. = A/g;g;,dlfé‘{é‘a'yf/hg_f@dgf// /_,_f@dg (13D

is an additionsl neutron importance arisen per uuit of time at the
sample placing,

Gl S GG, o oW

is the importance of fission neutrons emissioned throughout a reactor
per unit of time. Henoce, 1t is olear that to caloulate reactivity va-
riations ({’/{/—1) it is possible to use the saeme algorithm as one

364 -6~
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for other ratios of processes numbers. It is necessary to note that in
this case values which at multiplying by neutron flux F and integrating
over energies, velocity direotions and reactor volume will give a, and
aj, deteruined from equations (13) and (M), should be in right h;ni of
equation (ha) instead of 1/1&1 and 1/1a,. Therefore, i. .8 necessary to
replace in equation (113) and in followigg equations:

7 L? DY = *
7 - _;;, - S X, (€6 FAEIE /2,76,"/776/54/&’4://5-%‘?"/5‘/‘/‘9’ (15)
R s -4 PPy
Yz /[9 ’ Gﬂ“_’/@a@dﬂ (16)
Foraulas (9), (15) and (16)take into scoount not only possible in-
acoursoy in sample constants but inacouracies of the constants desorib-
ing the reactor and also the reactor speotrum variatiors oaused by t.e
influence of the inserted sample,

the t’i:; vz:::::;nn:it:: z:ompt neutron mean life time Leing a ratio of

1 portance to the importance of fission neut-
rons, emitted per seoond, can be obtained 1dentionlly/'3,'. In this oase
in formulas(4)- (9)1t is necessary to replace.

ai— %z"- dednav ; ot — L

%~ [FFy % do; Vel [F} ¥ dedn
Such analysis’was already begun 6 oarry out at the treatment of
experimental data obtalned in assechlies ]15.[

The development of the perturbation theory desoribed considcrably
extends its applioation area which of course is not limited by presented
examples (See e.g. /8/ ). In partioular, it beoomes poesibvle to set the
problem of optimization of breeding ratio or some other retios of proce-
sees numbers which ig disoussed in the next ochapter.

CheaepterII. THE USING C% %HR PERTURBATION THEORY
FUNCTIORALS IN THE VARIATIONAL PROBLEMS
ON MATERIAL OPTIMUM DISTRIBUTION IN
NUCLEAR REACTORS.

Using the pexrturbation theory it is possible to state in genaral
oasse the problem on & different resotor msterisls optimum distribution
with relation to the achievement of most advantageous characteristios
osused by the effect of these materials. The problem on rescior oritioal
mass minimization and the problem on the maximum breoding ratio in a
breeder are examples of such problems. The approach to the varistional
problem consists in the finding of extremum of corresponding funotional
whioh has variation presented with perturbation theory formulas, Seve-
ral other functionals or nonintegral conditions can be simultaneously
f£ixed so as from oaloulus of variations point of view we shall deal
with the isoperimetrical or conditional extremum problem /16/. In the

304 -7 -
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first from mentioned problems the functional 1is the reactor effective
multipliocation constant Keff having the variation being written with the
perturbation theory formulas /3/+ In the second problem perturbation
theory formulas are used /3/ for the linear fractional functional which
desoribes a ratio of two different reactor processes, Perturbation theo-
ry formulas contain different materials effiolenoy functions desori-
bing the effeot of these materials content variation on a valus of vary-
ing functional, This permits to formulate the variation problen in the
optimum distribution investigation of different materials in a reaotor,

The minimization reactor charge problem mnd more briefly the maxi-
mum breeding ratio problem are oonsidered below, Similar to considered
problems it 1s possible to formulate other varistion problems cn the op—-
timization of reactor characteristics (the maximum compensating napacity
of the absorption material, eto.),

§1. The statement of the problem on minimum oritiosl
reactor mass.

We have the nuolear reactor with limited sizes and with the given
content of structurzl materials, At some uniform oconcentration of U-235
in the core the reactor has definite value of Keﬁ.’ and oritical mass
GS' How should the distribution of U-235 over all core be modiried to
obtain the oritical mass reduoing without Kei’:f variaticns, if it is po-
ssible?

Similar problem has been considered by Goetzel /17/ to the thermal
reactor oase with the same moderator in the core as in the refleotor.
The method of such reactor oaloulation is comsidered also in monographs
/13/ and /a/.

In this report the condition of the oriticsl mass minimigation is
considered in general case for a reactor with an arbitrary neutron speo-
trum,

To definition we sssume that varying the concentration of U-235 ﬂ;(f)
in the point ¥ we simultaneously ohange the content of only one compo-
nent ''K'' having the concentration Y4 k(i’). In general we have the possi-
bility in principle to lower the oriticel mass of the given reasctor from
ﬂsnoonat LPS.O with the ocorresponding redistribution of U~235 in the
ocore, The problem is considered in two stages: at first the variational
problem for maximm Eope 8%t the given reactor mass is stated and then
the transition to problem on minimum Gg at fixed K ,, 18 disoussed.

§2. The achievement of maximum Kqpe in & resctor with
the given ocharge.
Varyingﬂ 5('17) we shall find the maximum Kqap¢ 8% the following 1iso- y
364 -8 -
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perimetricval condition:

G,=C[p,(3) dv (1)

According to Fuler's method /16/ we construct the functional
(2)
J (Ps) = Kegr + A1 Gs

and £ind its absolute extremum., The expression for the variation is
written so:

é‘]//’.r):d‘ch{(F,)+),:/J'P,(’5)dU (3

The £irst term we shall express witﬁlperturbation theory formulas

IKegr (£) < [ F(2; f5) 8 i (T) AV (8
By symbol £(¥ P 5) 1t T2 qefined the net neutron importaace generated
per seccnd in the point T with one fissionable material nucleus as 8
result of all interaction processes of meutrons with U-235, The function
f(i";/o5) in the following text is named as efficienoy function of U-235,
Dependence of this funotion upon _,0 5(?’) is)funotional, its structure is:
5) (" .

F(Z;p,)=f (Z:p5) - Pue f  (504) (s
where Jo 5 o} Pxo- material con’@étﬁ:rations sorre sponding to its maxi-
mun densitv. In }zerlaral: )

(£ K e i .
Fop,) = £ { T Fezemfop () 2 X (e£lAR) o
W eg B)] FUTER) dEdR dE AR - [[F(TE. RIFEER) Gotry (€) dE AT}
(=) > K - . N )y, , - - - ) e
f 1tp)e 3,‘"5{gg{{,F(1.E.n)W (Eef 57 7)F T2E. R) JEWR AE T -
- e i Guis FH3.e5)dEdR | (6)
woere I, ‘18 the normalizaffon importance of rission neutrons. Fuler's
equation for the variational problem under oconsideration

f{‘f;p‘):canst (7)
18 received by using equations (3) and (4) from extremum condition
d7(rs) = 0
Equation (7)) is the necessary condition of an optimal distribution
of the given amount of U-235 in the core, ensuring the maximum K off in
a reagtor with an arbitrary neutron spectrum . The physical meaning of
this ocondition is olear: if the U-235 efficiency function 1is constant
throughout the ocore, every gram of the riseionable material in any point
is used equivalently, From this it follcws that here we consider such reac-
tors, for which an extremum of funotional Keff (Ps) exists at the oconoen-
tration of U-235 04} S(F)Lp 5.0°

Equation (7) permits to base the method of experimental determina-

# The same requirement for the minimization of the oritiosl mass of a
thermal reactor is noted in Ref [4] by A,Weinberg and E.Wigner.

364 -9~

' - .

Approved For Release 2009/08/26 : CIA-RDP88-00904R000100110012-6




.

A Approved For Release 2009/08/26 : CIA-RDP88-00904R000100110012-6

tion of the U-235 concentration distribution in feaotor for whioh maxi-

oram Keff is realized at the glven charge. This equation can serve too as

a proper solution criterion and should be used in numerical calculations

for suoh reaotors, These are acoomplished with an iterative method, ac-

hieving on prooedura reduoctlion to constant value of efficienoy function

of U-235 in & core volume,

The possible caloulating iterative procedure consists in gradual <

redistribution of U-235 in core in accordance with the shape of the ocal-

culated efficiency funotion of U-235,

§3. The transition from maximum Kopp Prodlem to minimum
charge problem.

I/ 11 I II

Let functions £ S(r), Ps ®,... providingl?aximum Keprs Kore
have been found for diffexent charge values (}5, 55 oo 0of the reactor
under oonsideration, From Fig,I it follows the resctor charge correspon-—
ding to curve 1 with (2 Keﬂ/a GS)Va.B > 0 for eny value of K ,, Tequi-
red will be the least. In connection with this it 1s necessary speocially
to analyse the sign of derivative (O xeﬂ/a G5)V3.3 in the different
reactors.

Using the perturbation theory formulas it oan be shown that:

(3Kn/f)v - const / fa’V canstf
The oritieal reactor Daes minimization at f < 0 requires an additi-

onal consideration., Identioally to a proof in Ref /10/ for reactors with
P 5:-const it can be shown that for the different types of reactors with
variable concentration of U-235 the details of Ffunction diagram Gsa
£(Va.3) are determined with a relation the neutron leakage factor from

a reaotor and sn efficiency fissionable materiaml factor / ~f in a reactor,
Schematical diagrams of dependence Gswf(Va.B) for the different spectrum
reactors are given in Fig.2., In 8ll oases but the part CD of the ourve
the U-235 effiolenoy factor />0, In the part CD a depreciation of
U-235(% <0) oocurs and the slope of the ourve Gs-r(Ve.. 3) varies. Casuses
of such event oan be, for instance, a higher radiative ocapture of neut-
rons in the fissionable material, an availability of the strong resonanoe
absorbers in remtor, the using of = hydrogenoue moderator, eto. The ourve
slope changs of Gs-f(Va.B) in part CD leads to that without varying the
core volume certain amount of U-235 can be removed from such reactors
replacing it by a moderator without reactivity loss, Thus the oritiocal
reactor mass minimization at 240 is reduced pro forma to transition
from part CD to part C'D of the diagram curve.

364
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84, On fission density non-uniformity in minimized
charge reactors.

For minimizing a charge i1t serves +to purpose to displace U-235
from peripheral recactor regions near to central regions, however such
fiosion material redistributing in reactor is able adversely to effeot
on the non-uniformity coefficient of heat generation in a core. At ori-
tical mass minimizing in a small reactor it is necesmry to' make 'a""'i’ooa'l"
rising of U-235 conoentration on periphery of a core (Ref 17) parallel
with the fissionable material redistributing to reactor ocenter and some
improvement of fission density non-uniformity takes place,

In case a fission density maximum is at the boundary of the refleo-
tor and the core due to a refleotor moderating effect U-235 displacement
from peripheral regions of the oore to ocentral regions results in both
improvement of the heat generation non-uniformity and the reaotor charge
gain.

In a thermal heterogeneous resactor redial flattening of the average
energy generation in separate fuel elements may be reached by gradusl mo-
derator volume per cent rising from centre to the periphery of the ocore,
Paxallel with this it is possible to uniform U-235 effioienoy funotion
through fuel elements, As the energy release non-uniformity problem is
of importanoce in engineering, the variationsl problem of oritical reao-
tor mass minimization with the fission density non-uniformity coeffioi-
ent limiting in the ocore may be formulated.

The derivation on Fuler's equation for this prohblem is identical
to one mentioned above, In deriving this equation one takes into acoount
an isoperimetric condition for the volume non-uniformity ooceffiocient
K,» while an expression for J\Kv(_/) 5) may be obtained on the basis of
the formulas in Ref /8/. As s result the oonstanoy oondition of U-235
ef2iciency function 1s obtained in the core, having a speoial expression
for the problem under consideration,

§5. Variationa) problem for maximum of brseding ratio
(BR) in a breeder,

Consider 8 breeder with given demensions and given oore and reflec-
tor materials, Ve assume the reactor fuel is U-238 and Pu-239 and there
Pu-239 is acocumlated., Acoording to the determination the breeding ratio
in & reactor throughout is:

[TL F(zER) A 3164 (e) dE o v

BR - 2 Sk AR
Tagy T [ITF(TER)P, (26 (E)dEdST oV (8
The relation bétWeen the U-238 conoentration p (¥) and the Pu-239 con-
oentration pg(i') in every reactor point T can be varied with the follo-
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wing condition preserved:

LT e apy(3) = p (9
where o0 and/a are some given fuel element parameters, What distribution
of oconcentrations p 8(i‘) and ./Jg(f) in the reaotor is required to achie—
ve the maximum BR without Keff variation?

Expressions for the variation of the basio funotional BR and isops—~
rimetric condition d Ke =0 have been taken from Ref/s/. Lat 08(5) be a
varying funoction beoause“pg(i‘) is connected with it by the relation (9).

Taking into aoccount consideration mentioned above we write:

Jan=vfp¢(z p) 8P (T)dV (10)

(;K,,,zji_;v[}(i;p,)rfp,(t)dv.-o (11
vhere funotions ¢ (¥ p,) and } (f;p') are u)s follows:
VZip) _ [ff] 8ate) G (E] [G! (N Guln(E)] s vrn o i),
Lol - [fff eete) | el [{Gaigste) - S2p g (tea)}

L) Srpt
x FIZE &)dEdit ﬂj/{[w?s'-.s,zﬁ')— WIE=ERA) ],
[V €107 () X o (5, €27 - £V, 1e)6/ e VX (EETT)]} #
tF(TE'T) ¢, ER)dEAR 'dEDT
- ) - 1 ' e
F(Z:p) =/7f]{[w'(£ ~ERR)- o Wie—egw)] +
. oft'on .
[ ()6, (6)Xs (.6 85) - 2 V() X (e EONE
(FUATER') FUTER) dE'dR dEd -
- Me,.f,, (E)- £ Gulys (£)] FIZ,ER)F (T ER) dEE (13)
By means of relations (10) and (11) we found Fuler's equation for the
problem under consideration:

= "(i.;ﬂl)
) Z,’ s —
( f’n) f‘(i,p,) const (“l)

The oondition obtained of oonstancy U-238 efficiency funotion in the
reactor for problem under oonsideration oan be used in numerioal calou-
lations to £ind the U-238 optimum distribution P (P

Cha pter III, OPPIMIZING OF PHYSICAL CHARACTERISTICS
OF RADIATION SHIELDING,

§1. The statement of problem.

The basic problem of design and oaloulation of reactor shielding is
to £4nd such distribution of shielding materials (heavy and light ocompo-
nents, neutron absorber eto.), that satisfies some requirements., Thess
requirements ussually consist in minimizing of a shielding weight or si-
ze8 under definite oonditions (given dose on the shielding, heat genera-
tions eto,).
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Thus, this problem may be formulated as a variational problem on
optimum of some value Fo, for other wvalues given, F1;F2...;Fk...;Fm.

In some simple cases this problem can be resolved as a oclassical
variational one (E,Blizard, L.Kimel,E.Petrov,L.Pankratov,G.Lisochkin et
al /20/,/21/,/22/). However, in more complex cases when a large change
of radiation spentrum occurs (for instance, while introducing strong
absorbers for capture gamma radiation depression), prooesses in shield-
ing should {)e described by a complex multigroup system of equations and
using of classical methods ic difficult. Classical methods apply also to
problems, when optimum is achieved in an internal regilon of permissible
material concentration alterations (0« <y ("WAD ywhere p (¥) is concentra-
tion of "q" material in point .,/) % g itu avimum value) However, in
practical problems there is a situation, when in some regions it is not
advantageous to put some materials, and in other regions it is profitable
to put a material with maxioum density.

I general approach to the protlem solution on optimum distribution
of shielding materials may be based on using the method of consecutive
apgroximation%, step "n" of which is a transition from distribution

n) ™ top n+1)(->_p(n)(r> +d O (n)(r) Functions d"’)cn)(r) ghould be
chosen in .auch a way that:

a)the minimized value Fo would decrease as much as possible;

b)Values I‘1 PE"‘P would remain equal to given ones;

¢)transition an)(*) j)(n+1)(x':) would remain in region of permissi-
ble velues of fungtionsp (i")

To choosed’/? (n)(F) it is necessary to kmov in what way the value Fk
will be changed 1if the dencity of the materials changes in different
points T, If the value J'P 2)(?') is rather smell for the definition of
variation §F_ formulas of small perturbation theory (Refs /7/,/10/) can
be used, where Fk is expressed by means of functions of flux and "dan-
ger" of neutrons, which are solutions of the basic equation and the ad-
Joint equation in the preceding iteration., These formulas permit to cal-
oulate functions:

K - d‘FK
h, (T)=- 5
2 G
which are material "q" ef?ioiency in the point T relative to the value Fk.

The Xmowledge of efﬁoiency functions permits reasonable choice of va-
lue d'p(n)(a in every iteration, For example, in the absolute extremum
problen d o n)(ﬂ can be chosen in form J’jD n)(i*’)sA'h<n>('1’" in suoh a way
that 1f qth material efficiency relative tg Fo is maximum, the greater
amount of this material is added, where h (T) is negative its amount is
decreased., O0f ocourse, in order to use the small perturbation theory it
is necegsary to choose rether small value of JPq(F), this can be ensured

364 -13 -
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by choeccing a proper value A.
For the consctruction of numerical algorithm of optimum solution in-
vestigation it can be used the linear programming ideas.

§2. The perturbation theory application to shielding
characteristics. Sulelding material efiiciency functions,

In general physical characteristics of a shielding Fo'F1"‘Fk"'Fm
depend on neutron flux, gamma quantums and distribution of shielding ma-
terialqu(r’).

The neutron flux distribution is described for the steady state by
the equation:

R oPeB(e)¢- [l [dE' 92 BE) B@ATESE) =g, (BR,E) (1)
where % CE) is a total macroscopic cross-section of interaction;
2(.?['—»?{, E'—?E) is the differential seotion defining the transition of
neutrons from the bean (J-'Z’,E‘) to the beam (&T,E) (here it is considered
an elestic and inelastic transitions and fission too); q(F, X ,E) is
the distribution of neutron sources., A space for which we find a8 soluti-
on of equation (1) occupies the volume V, limited by surfaces S,

The different physical charaoteristics of 8 shielding can be writ-
ten in the form:

o= [ QEREP(RRE) AR ded T + D RET @
where the i’irgt term defines values due to the different neutron interac-
tion processes while passing surface, a heat generation from neutrons
and capture gamma-quantums, a neutron dose, eto. The term ¢[[)q(?)jde-
fines values due to external gamma-quantum sources (for instance, gamma-
quantums form active core). llere we have used the approximate method to
consider gamma-quantum, although its description by a kinetic equation
should not be a principal difficulty.

The shielding weight 1is & functional in form:

Fo=JZ f, (Z)dv
Consider an adjoin% with (1) equation:

- e SOV (AL i AR Z(E AR E) = Sk o)
where JF‘A" is a8 functional derivative of Pk with respect to & .

In oase of linear dependence from ¢ for functionals of type (2):

45 p.(2RE)

As has %gen showm in Rets /6/,/7/,/10/,/13/, the adjoint function
VI(?,R ,B) desoribes a variation of wvalue Fk’ if one additional neutron
has been injected in point (?,3"{,8). In shielding this funotion defines a
neutron "danger" relative to the neutron dose over a shielding, to gamma-
radiation dose, to a heat generation, eto.

A knowledge of flux and "danger" funotions permits to formulate a pertur-

bation theory for different functionals,
It oan be shown, that

§Fx=- g} @A) SLY(TRE)ALIRIE + (p(Z RV QZR ) AR dIE 4

> d
+ 8RR el (2, 261 A7 AR - g;ﬁ ip (R) A2 (%)
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where J’L, J'p and J'q, are variations, due to a material density variation,
$o0.(F), at the kinetic equation operator (1), and the right parts of
eduations (1) and (3) too.

As it has been shown in §1 the efficiency material funotion "q" re-
lative to different functionals Fk has form:

he g &) == J—Jﬂ~ (5)

The efficiency function def‘&ner the functional variation Fk while
inserting a unit quantity of the material "q" in point 7, Values h (F)
can be calculated using the perturbation theory formulas (4),

Then a change in functionals d'l‘k at varying material q density in
a unit volume near a point ¥ by a valueo/) (F) will be equal to:

Sh=h (@) dp )+ fﬁ," Ip, )

Thus having infotmationYabout efficiency functions know what varia-
tions in different funotionals will result from some small variation of
the material densitiesd‘pq(?).

§3, The minimizing procedure.

With consecutive operations for minimizing some functional E‘o, pro-
vided other functionals F1. .o Fm are under definite conditions:

Fu <Dx . k=12, (6)
it is necessary %o find such valuesd‘p (¥) in each stage that should lower

the value of the minimized functional under the condition (6):

Let us writepq”) 1n 1be f’orm

)09 Uy ()

wheref) is a theoretica density of material q,
and o,‘.u’(m}e{anﬂ 2 U,('z_)é—i &>

U (r) called further the control, will be concidered as piece-cons-
tant and equal to UqJ 2t interval Arj' let qu he in vector form 0’, which
has componentcs U _,.

Let Jp aj bg in formd”p quNq" where d‘UJ. sre the variations of
vector U tho using of which with poritive weight "doez not take out ?
from the region (7) GUQ and-JVU i are considered to be differ ont vorue

of them can be "barred";, S aj are some numbers, catisfied by limit::
r

O£ Sy z.-S (8)

Vectors 'f\) (~orrerpond to variation" dv ., vectors components are
defined above by efficiencies th of material § in a point J relative to
the funcetional Fk. ¢

Vector R, . appertainc to a space R mi4’ Mercurement of which is (m+1).
In the construction of veclors ‘K j ir Lhe gpace 8m1 it’l.s necesgssary tc
introduce a metric, av different components of vectors hqj have different
meacurementc and different orders of values, The metrie e¢an bhe introduced
for example, by means of variation of scales on the different components
(i.e.,by action of some diagonal matrix) so that average values of vector
components h chould hecome approrzimately equal.

A1 zurther conctrucilons are bhased on the 1inear small perturbation
theory, Mow the variation problem lo in the following form,
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To find such numbers Squatisfying to 1imitations (8), that for the

control
Upj =Usj +Sqy dlly;j

oonditions (6) and (7)should be fulfilled and with this an increment of
the minimizing funotional shogld be negative

IE, = ‘%‘S’j h‘”-A'Lj

A number of goints -

§ =tp St;jh’j azy
st all S ., subordinated by the inequalities (8), have made a convex clo-
sed polyhedron R, which should be called an attainable region, I is a 11-
nited region of the spaoce Rm+1.

To definition let us consider a ocase, when conditions (6) have a
form of equalities, Then the problem is reduced to a search of the point
of the intersection of the ray 1, with the direction (-1,0,0...0) wvith a
boundary of region R (in the common case to an intersection point of some
space, the points of which satisfy to conditions (6) with the boundary of
the region,

Let us consider one of simple but in practice sufficiently effective
methods to define qu. (In detail this problem has been considered in Ref.
/23/).

The variation procedure consists of series of the elementary actions,
in everyone of which the control varies only on one s %sfor one component Q.
A variation is chosen in such a way that as & result the minimized functi-
onal being more lowered at a least possible disturbance of the conditions
(6). Such variation is chosen for the conditions of minimum angle between
the wveoctors ‘ﬁq:j and To' Let pass from U Jto U;J-Uqfsq.jld’u 5 As conieqmi—
ence of this there will be a displacement of the_‘point f to the point f':€+
quhq;]"rj’ distance of which from axis 1, 18 PES.

The second elementary variation act is the restoration of boundary
oonditions(6). In this case the control variation is chosen from conditi-
on of minimum angle between vectors h 4 8nd (0,?1, §2. };k .

All vectors h 3 available at our dispos_zzl are considered identically.
In that the 1teratgon is oompleted, vectors h_.are counted again at cont-
rols fl’;Jobtained in the previous iteration and then a new iteration is
begun,

Other method of values S_,determination is possible,Itconsists in the
choice of some distance pqfrom the axis (-1,0,0...0)(1t 1s some boundary
condition non-conservance),which tends to zero in the iteration procedure.

Then —'qjis determined from relation:

PIE) =P(Syihgs. 013) = SyiPlhgs )av; = p,
The prooess is stopped, if it 1s not possible to select such S be means
of whioh the funoctional Fo can be reduced with conservance of condition
(6).

The optimelity criterion can be formulated in such a way, The optimal
composition is one (such values of control U J)’ vectors h_, of which
form & oonvex cone, not containing the minimized direction vector 10.

Denoted minimization prinoiple is applied, of course, to reactor

problems too.
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